Outro W14

Revie of the week

You can find the key concepts you studied this week in the following short reviews


 

9.7 Higher Roots

  • Properties of
  • LaTeX: \sqrt[n]{a}na when n is an even number and
    • a0, then LaTeX: \sqrt[n]{a}na is a real number
    • a<0, then LaTeX: \sqrt[n]{a}na is not a real number
    • When n is an odd number, LaTeX: \sqrt[n]{a}na is a real number for all values of a.
    • For any integer n2, when n is odd LaTeX: \sqrt[n]{a^n}=anan=a
    • For any integer n2, when n is even LaTeX: \sqrt[n]{a^n}=\mid a\midnan=∣a
  • LaTeX: \sqrt[n]{a}na is considered simplified if a has no factors of LaTeX: m^nmn.
  • Product Property of nth Roots
    LaTeX: \sqrt[n]{a\cdot b}=\sqrt[n]{a}\cdot\sqrt[n]{b}\:\:\:\:\:and\:\:\sqrt[n]{a}\cdot\sqrt[n]{b}=\sqrt[n]{a\cdot b}\(\sqrt[n]{a\cdot b}=\sqrt[n]{a}\cdot\sqrt[n]{b}\:\:\:\:\:and\:\:\sqrt[n]{a}\cdot\sqrt[n]{b}=\sqrt[n]{a\cdot b}\)
  • Quotient Property of nth Roots
    LaTeX:\(\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\:\:\:\:\:\:and\:\:\:\:\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}\)
  • To combine like radicals, simply add or subtract the coefficients while keeping the radical the same.

 

 

 

Before you click "Next," please work through all the tabbed sections on this page