Outro W8

Revie of the week

You can find the key concepts you studied this week in the following short reviews


 

6.5 Divide Monomials

  • Quotient Property for Exponents:
    • If a is a real number, a0, and m,n are whole numbers, then:
      LaTeX: \frac{a^m}{a^n}=a^{m-n}aman=amn, m>n     and     LaTeX: \frac{a^m}{a^n}=\frac{1}{a^{m-n}}aman=1amn   n>m

 

  • Zero Exponent
    • If a is a non-zero number, then LaTeX: a^0=1a0=1

  • Quotient to a Power Property for Exponents:
    • If and b are real numbers, b0 and m is a counting number, then:
      LaTeX: \left(\frac{a}{b}\right)^m=\frac{a^m}{a^m}(ab)m=amam
    • To raise a fraction to a power, raise the numerator and denominator to that power.

  • Summary of Exponent Properties
    • If a,b are real numbers and m,n are whole numbers, then
      Product Property                         LaTeX: a^m\cdot a^n=a^{m+n}\(a^m\cdot a^n=a^{m+n}\)

           Power Property                            LaTeX: \left(a^m\right)^n=a^{mn}\(\left(a^m\right)^n=a^{mn}\)

           Product to a Power                       LaTeX: \left(ab\right)^m=a^m\cdot b^m\(\left(ab\right)^m=a^m\cdot b^m\)

           Quotient Property                           LaTeX: \frac{a^m}{a^n}=a^{m-n}\(\frac{a^m}{a^n}=a^{m-n}\)    a0,    m>n

                                                                  LaTeX: \frac{a^m}{a^n}=\frac{1}{a^{n-m}}\(\frac{a^m}{a^n}=\frac{1}{a^{n-m}}\)     a0,   n>m

           Zero Exponent Definition                LaTeX: a^0=1\(a^0=1\)     a0,

           Quotient to a Power                         LaTeX: \left(\frac{a}{b}\right)^m=\frac{a^m}{b^m}\(\left(\frac{a}{b}\right)^m=\frac{a^m}{b^m}\)          b0

 

 

 

Before you click "Next," please work through all the tabbed sections on this page